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Abstract-Steady-state thermosolutal convection in a square cavity filled with air, submitted to horizontal 
temperature and concentration gradients, is studied numerically. In the first series of numerical simulations, 
the influence of solutal buoyancy force on heat or mass transfer rate is investigated : Lewis and thermal 
Rayleigh numbers are kept constant (Le = 1. Ra, = lo’), solutal Rayleigh number is varied (Ra, = lo’- 
5 x 10’). The second series deals with the influence of Lewis number on fluid motion for heat transfer 
driven flow (RaT = lo’, Ra, = 0) and mass transfer driven flow (Ra, = 0, Ra, = 10’) configurations. Lewis 
number is varied from 0.3 to 5. Correlations are obtained between heat and mass transfer rates and the 

non-dimensional numbers characterizing both phenomena. 

1. INTRODUCTION 

DURING the past 30 years many experimental and 
numerical studies have been carried out concerning 
convective phenomena within cells. Most of these 

studies deal with fluid motion due only to temperature 
gradients. Nevertheless, fluid motion may be induced 

by density variations due to gradients of other scalar 
quantities. One of these quantities can be pollutant 
concentration within the fluid. Such a phenomenon, 
combining temperature and concentration buoyancy 
forces, is called double-diffusion. 

Double-diffusion occurs in a very wide range of 

fields such as oceanography, astrophysics, geology, 
biology, chemical processes, etc. Ostrach [1] and 
Viskanta et al. [2] carried out a very complete state- 
of-the-art review. Ostrach focused his attention on the 
description of many types of flows (along flat plates, 
in plumes, in rectangular enclosures) while Viskanta 

et al. mostly studied fluid motions in thermohaline 

solutions. 
Gebhart and Pera [3] were among the first ones to 

numerically study double-diffusion for cases of ver- 
tical laminar fluid motions along surfaces or in 
plumes. In this study, special attention was paid to 
the influence of non-dimensional parameters relevant 
to double-diffusion, on the heat and mass transport 
processes ; transition to turbulence was mentioned. In 
1985, Bejan [4] completed a fundamental study of 
scale analysis relative to heat and mass transport pro- 
cesses within cavities, submitted to horizontal tem- 
perature and concentration gradients. Pure thermal 
convection, pure solutal convection, heat transfer 
driven flows, and mass transfer driven flows were 
taken into account. Furthermore, in another report, 
Trevisan and Bejan [5] studied the boundary layer 
flow in the same configuration (under the stationary 

regime) and varied several non-dimensional par- 
ameters: the Lewis and Prandtl numbers, and the 

buoyancy ratio. Lin et al. [6] repeated a similar study 
relative to the behaviour of the whole flow, under the 
unstationary regime. Other numerical works which 
are mainly concerned with chemical vapour depo- 
sition processes [7] dealt with very low Prandtl num- 
ber (0.01) gases. 

Experimental studies dealing with thermosolutal 
convection within rectangular cavities submitted to 
horizontal temperature and concentration gradients 
have been performed [&lo]. A layered flow structure 
was observed, according to particular values of the 
buoyancy ratio and of the Lewis number (very large), 
with both opposing or aiding buoyancy forces. The 
experimental results were in good agreement with Lee 
and Hyun’s numerical results for double-diffusive con- 
vection in a rectangular cavity, under the unsteady 

state [11, 121. 
This paper describes the results of a numerical study 

of steady-state double-diffusion in a square cavity 
filled with air (Pr = 0.71), submitted to either aug- 
menting or opposing temperature and concentration 
buoyancy forces. The numerical procedure is based 
on the SIMPLER algorithm [13]. In the first part 
of the numerical study, the effect of location of the 
pollutant source on the hot or cold vertical walls, and 
of the positive or negative value of the concentration 
expansion coefficient on fluid motion, is studied. A 
parametric study of the influence of the strength of 
the concentration buoyancy force on fluid motion and 
on heat or mass transfer rates is carried out. The 
second part is devoted to the study of the effect of 
thermal and solutal diffusions on heat and mass trans- 
fer rates. The cavity is filled with air mixed with differ- 
ent kinds of pollutants which have a Lewis number 
range between 0.3 and 5. A qualitative study in the 
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NOMENCLATURE 

c non-dimensional concentration of 
pollutant 

C* concentration of pollutant 

C, reference concentration 

Cc, CH concentration of pollutant on the 

D 

9 
H 
L 
Le 
N 
NM 

Nu, 

P 
P* 
Pr 

fk 

Ra, 

Sh 

left and right vertical walls 
mass diffusivity of pollutant through the 

fluid mixture 
gravitational acceleration 
height of the enclosure 

width of the enclosure 
Lewis number, a/D 
buoyancy ratio, fisAC/&AT) 

average Nusselt number (integrated over 
a vertical axis) 
local Nusselt number (i-position along a 
vertical axis) 
non-dimensional pressure 

pressure 
Prandtl number, v/cc 
solutal Rayleigh number, 

gBs(C, - Cc)H31(vD) 
thermal Rayleigh number, 

.&(TH- 7’c)H3/(v@) 
average Sherwood number (integrated 

over a vertical axis) 

SIri local Sherwood number (i-position along 

a vertical axis) 
T non-dimensional temperature 
T* temperature 

T, reference temperature of fluid mixture 
TC, TH temperatures of the left and right 

vertical walls 

u,, u, 0 non-dimensional velocities 
(horizontal, vertical) 

* u, velocities 

.x,3 x, .Y non-dimensional coordinates 
(horizontal, vertical) 

.X,* coordinates. 

Greek s 

;s 

symbols 
thermal diffusivity 
coefficient of volumetric expansion due to 
concentration change 
coefficient of volumetric expansion due to 

temperature change 
concentration boundary layer thickness 
thermal boundary layer thickness 
kinematic viscosity of fluid mixture 
density of fluid mixture 

reference density of fluid mixture. 

case of opposing flows helps to physically understand 
the influence of the Lewis number on fluid motion. A 
quantitative analysis enables us to quantify the aver- 
age heat or mass transfer rates in the two limiting 
cases of heat transfer driven flows (high temperature 
gradients) and mass transfer driven flows (high con- 
centration gradients). 

2. PHYSICAL AND NUMERICAL MODELS 

2.1. Physical Model 
The physical model is a square, two-dimensional 

cavity, whose upper and lower horizontal walls are adia- 
batic and impermeable ; the vertical ones are at differ- 
ent levels of temperature and concentration, in order 
to generate fluid motion (see Fig. 1). 

The fluid contains a pollutant concentration. The 
pollutant and the fluid are completely mixed. There- 
fore, the system to be studied is the fluid mixture (fluid 
and pollutant). 

2.2. Model Equations 
The primitive variables of double-diffusion prob- 

lems are the same ones as for pure convection prob- 
lems (i.e. velocities, pressure, temperature), with an 
additional scalar quantity, which is the pollutant con- 
centration of the fluid mixture. The behaviour of this 
quantity is globally similar to the temperature one. 

As a result, the mathematical model of double- 
diffusion includes a concentration equation, obtained 

in the same way as the energy equation (mass balances 
in control volumes). Moreover, the buoyancy con- 
centration force is taken into account by considering 
that for small density variations, the density of the 
fluid at constant pressure depends on the temperature 
and species concentration [14] 

P * z pm + (ap*/aT*),(T* - TT,) 

+(ap*/aC*),(C*-C,)f”‘. (1) 

By analogy with the thermal processes, one can define 
a concentration expansion coefficient 

/% = - (l/P*)(ap*lac*),. (4 

It is worth noting that the concentration expansion 
coefficient is slightly different from the thermal one: 
fiT (air or water) is always positive (an increase in 
temperature induces a decrease in density) while /3s 
may be either positive or negative (an increase in 
pollutant concentration, respectively, induces a 
decrease or an increase in density). These con- 
siderations lead to the Boussinesq approximation and 
to the vertical momentum equation. 

The dimensionless variables of the stated problem 
are 

X, = x,*/H (3) 
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FIG. 1. Studied geometry. 

ui = u;H/cc (4) C(O,y) = 1 or 0 (16) 

T*-T, 
T=e 

C(l,y) = 0 or 0 (17) 

P = P*p*a2/H2. 

a7yx,o) a7yx, 1) aqx,o) aqx, 1) o ----= -= 
(6) ax ax ax ax=. 

(18) 
(7) 

The reference temperature and concentration are 2.3. Dimensionless Parameters 
(TH + T,)/2 and (Cu + C,)/2, respectively. In equations (9) and (1 l), one must notice the pres- 

With the above-mentioned dimensionless variables, ence of four dimensionless governing parameters : 
the mathematical problems to be solved are : 

continuity equation 
thermal Rayleigh number 

(8) 
RaT = g/MTH - Tc)H3. 

9 
vu (19) 

momentum equation 
solutal Rayleigh number 

au. a%. 
u.2 -pr-.L 
1 ax, = - g + Ra, Pr(T-0.5)6,, axiax, , 

Ras = sBs(G - C&-f3 
VD 

; (20) 

+ Ra, g (C-0.5)6,, ; 
Prandtl number 

(9) 

energy equation (21) 

aT d2T o 
uJq-ax,= ; (10) Lewis number 

species diffusion equation Le=%. (22) 

ac I a*c ~ = 0. Ui&-Leaxjaxj (I 1) Each of these parameters influences the fluid motion. 
Varying the values of thermal and solutal Rayleigh 

The boundary conditions of the stated problem are numbers modifies the buoyancy forces. Since the 

u(O,y) = u(l,y) = u(x,O) = u(x, 1) = 0 (12) 
concentration expansion coefficient is negative or 
positive, and according to the location of the pollutant 

~(0, y) = u( 1, y) = u(x, 0) = v(x, 1) = 0 (13) concentration on the hot or cold vertical walls, the 

T@,Y) = 1 (14) 
solutal and thermal buoyancy forces may be either 
augmenting or opposing each other. In fact, four con- 

T(l,y) = 0 (15) figurations of flows can be observed : 
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FIG. 2. Studied configurations (C,, > C,.. T,, > 7’.) : ----+ 

l two cases dealing with augmenting buoyancy 
forces (see Figs. 2(a) and (b)) ; 

l two cases dealing with opposing buoyancy forces 
(see Figs. 2(c) and (d)). 

The Lewis number represents the ratio between the 
thermal and solutal diffusivities. It can also be ex- 
pressed as a function of the Schmidt number (anal- 
ogous to the Prandtl number) 

SC=;. 

From both expressions of Prandtl and Schmidt num- 
bers, one can write 

Leg. (24) 

For a Lewis number greater than unity, the solutal 
diffusivity is stronger than the thermal one ; for a 
Lewis number less than unity, the thermal diffusivity 
is stronger than the solutal one. This will be studied 
in the second part of our numerical analysis. 

2.4. Heat and Mass Tramfer Rates 
The local Nusselt (heat transfer rate) and local 

Sherwood (mass transfer rate) numbers on the i- 
position along a vertical axis are evaluated from the 
following expressions (using previously mentioned 
dimensionless variables) : 

“9 
I 
I 
I 
I 

0, or Ra, < 0 

2.b 

T’ = Tc 

c’ = C” 

0, or Ra, > 0 

2.d 

solutal buoyancy force : - thermal buoyancy force. 

(26) 

The use of these expressions enable us to obtain con- 
servative heat and mass transfer rates within the cavity 
[ 15, 161. They include diffused and transported quan- 
tities which are integrated over the vertical axis in 

order to calculate the average heat or mass transfer 
rates (Nu or Sh) along this axis. 

2.5. Numerical Procedure 
The numerical resolution is the SIMPLER (Semi 

Implicit Method for Pressure Linked Equation 

Revised) ; developed by Patankar [I 31. The model 
equations are spatially discretized over a staggered 
grid using the finite difference method and then inte- 
grated over control volumes. The SIMPLER algo- 
rithm is an iterative scheme which consists of cor- 
recting velocities a priori estimated with the 

momentum equations. As the iterative process con- 
verges, the velocities will fit the pressure correction 
equations derived from the continuity equation. The 
pressure and pressure correction equations are solved 
with a direct method, while for the other equations 
(momentum, energy and concentration), a Tri-Diag- 
onal Matrix Algorithm (TDMA) [ 171 is used. In order 
to improve the convergence of the iterative procedure, 
an under-relaxation of the equations is necessary. The 
convergence of the algorithm is reached when the 
residual of the momentum equations is less than lo- ‘. 
The physical domain is discretized into a non-uniform 
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Tchebycheff grid [I 81, which ensures thin grid spacing 
close to the walls, and a coarser mesh system in the 
core region. 

3. RESULTS AND DISCUSSION 

3.1. Effect of Buoyancy Forces 
The flows considered in this part are augmenting or 

opposing flows, with Le = 1 and Pr = 0.7 (air). A 
Lewis number of unity means that the diffusion of 
pollutant concentration is the same as diffusion of 
temperature. As a result, the isopleths of con- 
centration and temperature are similar. 

3.1,l. Comparison of pure thermal convection-aiding 
flOWS 

This first study consists of comparing pure thermal 
convection with thermosolutal convection, in the case 
of augmenting flows (Fig. 2(a)). For pure thermal 
convection, the thermal Rayleigh number is 2 x 104, 
while a solutal Rayleigh number of lo4 and a thermal 
Rayleigh number of lo4 are used to simulate thermo- 
solutal convection. The same results are obtained: 
isopleths of concentration (or temperature) (Fig. 
3(b)) and Sherwood (or Nusselt) numbers (Tables 1 
and 2) in the latter case are similar to isopleths of 
temperature (Fig. 3(a)) and Nusselt numbers in the 
former case. This is explained by the fact that the 
contribution of the thermal and solutal buoyancy 
forces aiding each other is the same as the thermal 
one occurring in pure thermal convection. As a result, 
the two aiding solutal and thermal buoyancy forces 
(identical thermal and solutal diffusivities) are to be 
likened to the thermal natural convection effect. 

3.1.2. Comparison ofaidingflows (cases 2(a) and (b)) 
In the following numerical study, the respective 

locations of thermal and solutal boundary conditions 
are varied. The previous thermosolutal convection 
configuration is compared with the case described in 
Fig. 2(b) (the pollutant concentration is located on 
the cold vertical wall of the cavity, Ra, = 
-Ra, = - 104). This configuration leads to identical 
isopleths of temperature to the former ones (Fig. 3(c)). 
Nevertheless, although there seems to be a similarity 
between the concentration and temperature patterns, 
one must keep in mind that concentration and tem- 
perature boundary conditions are reversed. Hence, 
there is a complementarity between the temperature 
and concentration dimensionless values ; Sherwood 
and Nusselt numbers are the same in absolute value, 
but of opposite signs (Sherwood number is negative). 

3.1.3. Comparison of opposing flows (cases 2(c) and 

(d)) 
The same kind of comparison is led concerning 

opposing flows (Figs. 2(c) and (d)). Both temperature 
patterns are presented in Figs. 3(d) and (e). Since 
thermal and solutal buoyancy forces are opposite, the 
buoyancy effects are cancelled ; convection disappears 

and the mass and heat transfers are diffusion domi- 
nated. 

3.14. Influence of the solutal Rayleigh number 
The configuration of the last series of numerical 

simulations relative to the effect of buoyancy forces is 
described in Fig. 2(d). Solutal and thermal Rayleigh 
numbers are positive, but the boundary conditions 
are reversed. The thermal Rayleigh number is kept 
constant (RaT = lo’), the solutal Rayleigh number is 
increased from lo6 up to 5 x 10’. From Figs. 4 and 5, 
one can notice a stagnant core region (except for pure 
diffusion) ; the flow is mostly driven by fluid motion 
within the boundary layers. In the case of pure mass 
or thermal diffusion, there is no vertical buoyancy 
force. Hence, the velocities are equal in absolute value 
and the fluid motion is circular (Fig. 5(e)). There is 
no boundary layer regime ; the isopleths of con- 
centration or temperature are parallel and vertical 
(Fig. 4(e)). The flow is driven by the net effect of 
the two buoyancy forces. When the solutal Rayleigh 
number is less than the thermal one, the convection is 
thermal dominated and the flow is clockwise (Figs. 
4(a)-(d) and 5(a)-(d)). A solutal Rayleigh number 
greater than the thermal one induces a concentration 
dominated counterclockwise flow (Figs. 4(f), (g) and 
5(f), (g)). When the net effect of thermal and solutal 
buoyancy forces is opposite, symmetrical cases (Figs. 
4(b), S(b), 4(f) and 5(f)) are to be noted. For each of 
these simulations, the evolution of the average Nusselt 
number along the hot vertical wall was plotted (Figs. 
6(a) and (b)). A new dimensionless governing par- 
ameter is used, i.e. the buoyancy ratio N. This number 
is the ratio between the solutal and the thermal buoy- 
ancy forces 

(27) 

where 

AC* = C*(left wall) - C*(right wall) 

AT* = T*(left wall) - T*(right wall). 

It can be either positive or negative, according to the 
values of the concentration expansion coefficient and 
the location of the pollutant source (on the hot or 
cold vertical wall). Figure 6(a) (N < - 1) shows that, 
when the fluid motion is induced by the thermal buoy- 
ancy force, the transported energy increases with N, 
i.e. the net buoyancy force increases. Since the fluid 
motion is clockwise, the buoyancy force is maximum 
at the bottom of the hot wall, hence the heat transfer 
rate is maximum. The reversed phenomenon is to be 
highlighted, when N 2 - 1 (a solutal vertical gradient 
induces the fluid motion (Fig. 6(b)). Under these con- 
ditions, there is a correlation between the average 
Nusselt number within the cavity and the global buoy- 
ancy force Ra, x abs(1 +N) (Table 3). (In the case 
of Le= 1, Ra, x abs (1 + N) = Ra, + Ra,.) This 
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r b . . . I I 

FOG. 3. Isopieths of temperature (pure thermal convection) : (a) Ra, = 2 x 104. Isopleths of temperature 
~t~ermosolutal convection. Le = 1) : (b) RaT = lo*, Ra, = 104, aiding flows; (c) RaT = I@, Ru$ = IV, 

aiding Bows; (d) Ra, = 104, Ras = 104, opposing flows; (e) Ru, = 104, Ra, = - 10“. opposing flows. 
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Table 1. Local Nusselt numbers along the left vertical wall, 
Le = 1, Pr = 0.71, Ru, = 104 

Dimensionless height Local Nusselt number 

0.001 4.16 
0.009 4.17 
0.022 4.20 
0.039 4.25 
0.062 4.32 
0.089 4.39 
0.120 4.42 
0.155 4.42 
0.193 4.36 
0.235 4.25 
0.279 4.09 
0.326 3.89 
0.374 3.65 
0.424 3.39 
0.475 3.11 
0.525 2.82 
0.576 2.52 
0.626 2.23 
0.674 1.93 
0.721 1.65 
0.765 1.39 
0.807 1.16 
0.845 0.97 
0.880 0.83 
0.911 0.74 
0.938 0.68 
0.961 0.65 
0.978 0.64 
0.991 0.63 
0.999 0.63 

relationship is illustrated in Fig. 7 ; the empirical cor- 
relation is given as follows : 

Nu = 0.22(&x, xabs(1 +N))‘.*‘. (28) 

The correlation coefficient is very good (0.9999). This 
relation seems to be in good agreement with the one 
developed by Trevisan and Bejan [5] for a cavity sub- 

mitted to uniform heat and mass fluxes along the 
vertical sides. Moreover, the value of the exponent is 

very close to the boundary layer characteristic value 
relevant to natural convection in a cavity heated from 
the side [14]. 

3.2. EfSect of the Lewis Number 

The last series of numerical investigations studies 
the influence of the Lewis number on the heat and 
mass transfer processes within the cavity. The con- 
figuration to be studied is the one described in Fig. 
2(d), dealing with opposing temperature and con- 
centration horizontal gradients. The fluid filling the 
cavity is air (Pr = 0.71) mixed with different kinds of 

pollutant species. The Lewis numbers of pollutant 
mixed with air may vary between 0.2 and 5 (25°C and 
1 atm) [3]. The concentration expansion coefficient of 
the pollutant sources considered here is supposed to 
be positive. It should be noticed that these pollutant 
sources mixed with another fluid may have different 
characteristics : the concentration expansion coeffi- 
cient of these species may be negative, and the Lewis 

Table 2. Local Nusselt and Sherwood numbers along the left 
vertical wall, Le = 1, Pr = 0.71, Ra, = Ra, = IO“, aiding 

flows 

Dimensionless Local Nusselt Local Sherwood 
height number number 

0.001 
0.009 
0.022 
0.039 
0.062 
0.089 
0.120 
0.155 
0.193 
0.235 
0.279 
0.326 
0.374 
0.424 
0.475 
0.525 
0.576 
0.626 
0.674 
0.721 
0.765 
0.807 
0.845 
0.880 
0.91 I 
0.938 
0.961 
0.978 
0.991 
0.999 

4.18 
4.18 
4.21 
4.26 
4.33 
4.39 
4.43 
4.42 
4.36 
4.25 
4.09 
3.89 
3.65 
3.39 
3.11 
2.82 
2.52 
2.22 
1.93 
1.65 
1.39 
1.16 
0.97 
0.83 
0.74 
0.68 
0.66 
0.64 
0.64 
0.64 

4.18 
4.18 
4.21 
4.26 
4.33 
4.39 
4.43 
4.42 
4.36 
4.25 
4.09 
3.89 
3.65 
3.39 
3.11 
2.82 
2.52 
2.22 
1.93 
1.65 
1.39 
1.16 
0.97 
0.83 
0.74 
0.68 
0.66 
0.64 
0.64 
0.64 

number of such constituents mixed with water is 
greater than 100. 

The Lewis number deals with relative influence of 

thermal and mass diffusions. It has an effect on the 
thicknesses of the thermal and solutal boundary layers 
[4]. Grid refinement tests were performed in order 
to obtain grid independant results (35 x 35-45 x 45 

Tchebycheff grids). Hence, both solutal and thermal 
boundary layers contain at least three grid points. 

3.2.1. Qualitative study 
Numerical results referring to the Lewis numbers 

varied from 0.5 up to 5 are given in Table 4 

(RaT = lo’, Ras = 106). Absolute values of Sherwood 
numbers along the hot vertical wall were drawn 
(Fig. 8). From this figure, two conclusions are to be 
registered : 

l The Sherwood number increases with the Lewis 

number. This phenomenon is illustrated in relations 
(29)-(31) developed below (the type of flow studied 
here is a heat transfer driven flow : the thermal Ray- 
leigh number is much higher than the solutal Rayleigh 
number). 

l The Sherwood number is maximum at the bot- 

tom of the left hot wall, and it decreases from the 
bottom to the top of the wall. Since the thermal buoy- 
ancy force is stronger than the concentration one, the 
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FIG. 4. Isopleths of temperature (Lr = 1, Ru, = lo’, opposing flows) : (a) Ras = IO6 ; (b) R+ = 5 X 10’ : 
(c) Ru, = 8 x IO’ ; (d) Ras = 9 x IO6 ; (e) Ra, = 10’ : (f) Ru, = 1.5 x 10’ : (g) Ra, = 5 x 10’. 
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(a) 

FIG. 5. Streamlines (Lr = 1, RuT = 107, opposing flows): (a) Ra, = 106; (b) Ras = 5 x 106; 
(c) Ra, = 8x 106; (d) Ra, =9x 1O6; (e) Ra, = IO’; (f) Ras = 1.5x 10’; (g) Ra, = 5 x IO’. 
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(a) 
FIG. 7. Opposingflows. Ra, = lo’, Le = I, N = -0.01, -5. 

Nusselt Ilumber along the hot wall 

FIG. 6. Local Nusselt number along the hot wall, op- 
posing flows, Ra., = lo’, LE = I : (a) N = -0.1, - I ; 

(b) N= -I, -5. 

fluid motion is clockwise. The fluid near the bottom 

of the left wall is very polluted, and the concentration 
decreases as it moves along the left, non-polluted ver- 
tical wall ; the velocity of the fluid mixture also 

decreases. Therefore, the Sherwood number along the 
left wall decreases. 

From isopleths of concentration (Fig. 9), it is to be 

Table 4. Heat transfer driven flow, RaT = lo’, Pr = 0.71, 
non-dimensional thermal boundary layer thickness, average 

Sherwood number 
____--. 

Le SC 6,/H Sh 

0.5 0.35 0.039 11.0 
0.6 0.42 0.032 12.5 
0.7 0.49 0.028 13.7 
0.8 0.56 0.024 14.8 
0.9 0.63 0.022 15.6 
I.0 0.70 0.019 16.4 
2.0 1.40 0.010 21.3 
3.0 2.10 0.007 24.4 
4.0 2.80 0.005 26.7 
5.0 3.50 0.004 28.7 

noticed that with Lewis numbers less than unity, the 
mass transfer process is diffusion dominated. The 
solutal boundary layer is rather thick, and the iso- 

concentration lines are tilted. The more the Lewis 
number is decreased, the more the isoconcentration 
lines are tilted, the more the pollutant concentration 
is diffused. The reverse phenomenon occurs when the 

Lewis number is greater than unity. The solutal 
boundary layer becomes thinner and thinner and the 

pollutant concentration less and less diffused. As the 
Lewis number is increased up to 5, the major mass 
transfer process is mass diffusion within the solutal 
boundary layer. The core region is filled with a homo- 
geneous fluid. The massline pattern [5] (Fig. IO) in the 
case of Le = 5 reinforces this assertion. 

Table 3. Average Nusselt and Sherwood numbers (along a vertical axis), Le = 1. Pr = 0.7 1, 
N is varied from -0.01 to - 5 

Ru, = IO’ 
Ra, 

10’ 10h 2X 10” 5x 10h 8x lOh 9 X 10h 1.5x10’ 5x10’ 

N -0.01 -0.1 -0.2 -0.5 -0.8 -0.9 - 1.5 -5.0 
NU 16.4 16.0 15.5 13.6 10.6 8.8 13.6 23.1 
Sh -16.4 - 16.0 - 15.5 - 13.6 - 10.6 -8.8 - 13.6 -23.1 
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FIG. 8. Local Sherwood number along the hot wall, opposing 
flows, Ra, = IO’, Ra, = 106, Le = 0.5, 5. 

3.2.2. Quantitative study 

Links were obtained between average Sherwood or 
Nusselt numbers and the characteristic numbers of 
double-diffusion, in the case described in Fig. 2(d). 
Two configurations were studied : 

(a) heat transfer driven flows; 
(b) mass transfer driven flows. 

Heat (respectively mass) transfer driven flows are 
due to the temperature (respectively solutal) buoy- 
ancy force. Therefore, the solutal (respectively ther- 
mal) Rayleigh number is set to zero. This is an ideal 
case which helps acquire a better understanding of the 
influence of the characteristic numbers on the fluid 
motion. 

3.2.2.1. Heat transfer driven jaws. In order to 
obtain these links, we used the results of the scale 
analysis developed by Bejan (vertical flat plate) [4]. 
The scale analysis consists of evaluating the con- 
vection equations under the boundary layer regime. 
The length scales of the phenomena are the thermal, 
concentration and dynamic boundary layer thick- 
nesses, and the height of the vertical plate. The bound- 
ary layer thicknesses are linked with the Prandtl, 
Schmidt and Lewis numbers. Therefore, several cor- 
relations are to be obtained according to these values. 
In the case of a Prandtl number less than unity, the 
following results are obtained (vertical flat plate) : 

In (Sh Ra, ‘j4) =f(ln (Le)) (35) 

to illustrate equations (29) and (31) (Fig. 11). From 
Fig. 11, it can be pointed out that there seems to be a 
transition in the region Le z 1. The slope of the first 
part of the curve (Le < 0.7) is 0.8, while the slope of 
the second part (Le > 2) is 0.3. The second part of the 
curve seems to be in good agreement with the results 
of the scale analysis (equation (29)), while the first 
one does not (equation (3 1)). This discrepancy can be 
due to the very close Lewis numbers (0.3-0.7), but is 
mainly due to the configuration of the cavity itself. 
Applying this scale analysis to a tall cavity (with ver- 
tical sides which can be compared to a vertical flat 
plate) may induce more accurate results : the vertical 
velocity in a tall cavity of aspect ratio L/H = 0.25-0.5 

tends to be identical to the one along a vertical flat 
plate; in the case of a square cavity, it is different [4]. 

3.2.2.2. Mass transfer driven J?OWS. A similar series 
of numerical simulations were carried out in the case 
of mass transfer driven flows. The scale analysis rel- 
evant to the average Nusselt numbers gives the fol- 
lowing results (Pr < 1) : 

Le > 1,Sc > 1 Nu z Le-’ Ra$4Sc”2 (36) 

Le < 1,Sc < 1 NM z Lee’)* Ra$“‘s~“~ (37) 

Le > 1, SC < 1 Nu z Le- ’ Rai’4 Sc’14. (38) 

The thermal boundary layer thickness is calculated 
from 

SC> 1 Sh zz Leil’Pr”‘* RaT4 (29) Le > 1, SC > 1 6,/H w Le Ra; ‘.‘4 SC- ‘I2 (39) 

SC < 1, Le > 1 Sh zz Le”* Pr’14 Ra$4 (30) Le < 1, SC < 1 6,/H z Le”* Ra< Ii4 Sc- ‘I4 (40) 

SC-C l,Le< 1 ShxLePr’/4Ra:!4. (31) Le > 1,Sc < 1 &/HZ Le Ra<“4Sc-“4. (41) 

To fit these equations on the mass transfer process The input data and the results of the calculation 
in a cavity, one must make sure that the concentration (thermal boundary later thickness, average Nusselt 
boundary layer is smaller than the width of the cavity number) are listed in Table 5. From equations (36) 
[4]. The aforementioned values of the average Sher- and (37), it can be pointed out that the logarithmic 
wood number are obtained from the following value of the Nusselt number linearly depends on the 
expressions of the concentration boundary layer logarithmic value of Rai14. Hence, the following 
thickness (Sh z H/6,) : relation was plotted in Fig. 12 : 

SC > 1 SC/Hz Le- ‘I’ Pr- ‘I’* Ra; ‘I4 (32) 

SC< l,Le> 1 6,1HwLe-“2Pr-“4Ra;“4 

(33) 

SC < 1, Le < 1 6,/H z Le- ’ Pr- ‘14Ra~. (34) 

The case to be studied here is a fluid (Pr = 0.7) 

mixed with different kinds of pollutant species 
(Le = 0.3-5); the thermal Rayleigh number is 10’. 
The non-dimensional thickness of the concentration 
boundary layer is less than unity (Table 4). The aver- 
age Sherwood numbers calculated from the numerical 
model are sketched in Table 4. From equations (29) 
and (31), one can check that the logarithmic value 
of the Sherwood number linearly depends on the 
logarithmic value of Ra; ‘I4 Hence, we plotted the 
following relation : 



(4 

G-9 

FIG. 9. Isopleths of concentration (RnT = 10 7, Rus = 1 06, opposing flows) : (a) Lr = 0.5 ; (b) LP = 0.8 ; 
(c) Lc = 1 ; (d) Le = 2: (e) Lx = 5. 

In (Nu Ra, ‘:“) =,f(ln (Lx)). (42) Le < 1: the slope of the curve is - 0.8. 

Similar results to the heat transfer driven Aow ones 
are to be highlighted : 4. CONCLUDING REMARKS 

(a) transition in the Le = 1 region ; 
(b) linear dependence on the Lewis number : 

A numerical procedure based on the SIMPLER 
algo~thm was used to investigate stationary thermo- 

Le < 0.7 : the slope of the curve is -0.3, solutal convection in a square cavity submitted to 
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FIG. 10. Mass lines, Ra, = 107, Ru, = 106, opposing flows, 
Le=5. 

5: 

FIG. I I. Heat transfer driven Row, average Sherwood 
number. 

Table 5. Mass transfer driven flow, Ras = LO’, Pr = 0.71, 
non-dimensional thermal boundary layer thickness, average 

Nusselt number 

Le SC b/H Nu 

0.5 0.35 0.36 20.5 
0.6 0.42 0.35 19.5 
0.7 0.49 0.33 18.6 
0.8 0.56 0.32 17.8 
0.9 0.63 0.30 17.1 
1.0 0.70 0.29 16.4 
2.0 1.40 0.21 11.7 
3.0 2.10 0.16 8.8 
4.0 2.80 0.12 7.0 
5.0 3.50 0.10 5.7 

augmenting or opposing thermal and solutal gradi- 
ents. The cavity is filled with air mixed with different 
kinds of pollutants. A series of numerical experiments 
was performed, dealing with thermosolutal con- 
vection relevant to pollutants with the Lewis number as 
unity. The thermal buoyancy force is kept constant 
whilst the solutal buoyancy force is varied. According 
to the value of the solutal buoyancy force (i.e. solutal 

FIG. 12. Mass transfer driven flow, average Nusselt number. 

Rayleigh number) and to the location of the pollutant 
source, the fluid motion may be either clockwise or 
counterclockwise; the combined effects of thermal 
and solutal buoyancy forces are to be compared with 
the effect of one thermal or solutal dominated buoy- 
ancy force, in the case of Le = 1. A correlation rele- 
vant to Nusselt or Sherwood numbers was obtained. 
In the latter series of numerical experiments, the Lewis 
number is varied from 0.3 to 5, in the case of opposing 
buoyancy forces. When the Lewis number is less than 
unity, the concentration boundary layer is rather 
thick; hence, the cavity is filled with a high diffusion 
pollutant, the isopleths of concentration are tilted. 
When the Lewis number is much greater than unity, 
the solutal boundary layer is thinner, the pollutant 
is diffused within the concentration boundary layer, 
therefore the core of the cavity is filled with a homo- 
geneous fluid. Wail heat and mass transfer rates are 
quantitatively estimated from correlations in the cases 
of heat transfer driven flows and mass transfer driven 
flows. These correlations, which show a dependence 
of heat and mass transfer rates on Lewis number, are 

in agreement with the plane vertical plate results. 
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ETUDE NUMERIQUE DE LA DOUBLE DIFFUSION DANS UNE CAVITE CARREE 

R&m&La convection thermosolutale, en regime stationnaire, dans une cavite carree remplie d’air, 
soumise a des gradients horizontaux de temperature et de concentration, est Ctudite numeriquement. Dans 
la premiere serie de simulations, on etudie I’influence de la force de poussee solutale sur les taux de transfert 
de chaleur ou de masse : les nombres de Lewis et de Rayleigh thermique sont constants (Le = 1, Ru7 = lo’), 
le nombre de Rayleigh solutal varie (Ras = 10’ a 5 x IO’). La deuxitme strie de simulations se rapporte a 
l’analyse de l’influence du nombre de Lewis sur le mouvement du fluide, dans les cas d’tcoulements a force 
de poussee thermique dominante (RaT = IO’, Ra, = 0) et a force de poussee solutale dominante (Ra, = 0, 
Ru, = IO’). Le nombre de Lewis varie de 0.3 a 5. Des correlations sont obtenues entre les taux de transfert 

de chaleur et de masse et les nombres adimensionnels caracttrisant les deux phtnombnes. 

NUMERISCHE UNTERSUCHUNG DER DOPPELT-DIFFUSIVEN NATURLICHEN 
KONVEKTION IN EINEM QUADRATISCHEN HOHLRAUM 

Zusammenfassung-Es wird die stationare doppelt-diffusive Konvektion in einem quadratischen luftge- 
fiillten Hohlraum unter dem EinfluB horizontaler Temperatur- und Konzentrations-Gradienten numerisch 
untersucht. Eine erste Reihe numerischer Simulationen befaBt sich mit dem EinfluB der kon- 
zentrationsbedingten Auftriebskraft auf den Warme- oder Stoffiibergang: Die Lewis- und die thermische 
Rayleigh-Zahl werden konstant gehalten (Le = 1 : RUG = lo’), die Konzentrations-Rayleigh-Zahl wird im 
Bereich IO’ < Ra, c 5 x IO’ variiert. Eine zweite Reihe behandelt den Einflul3 der Lewis-Zahl auf die 
Fluidbewegung fur thermisch getriebene (Ra, = 1 O7 ; Ra, = 0) und konzentrationsgetriebene Anordnungen 
(RaT = 0; Ra, = 10’). Die Lewis-Zahl wird dabei im Bereich 0,3-5 variiert. Es ergeben sich Korrelationen 
zwischen den Wlrme- und Stoffiibergangskoeffizienten sowie fiir die dimensionslosen Kennzahlen, welche 

beide Phlnomene charakterisieren. 

WiCJIEHHOE MCCJIEHOBAHAE ECTECTBEHHOR KOHBEKIJMM B KBAAPATHOm 
l-IO.JIOCTM 

AmoTaqnn-Qicnemio mcnenyemx craueofiapHb6i nepettoc Tenna II Maccbt B 3anonHeHHoii eo3Ayxo~ 
KBaApaTHOii rIOnOCTti lIpU HaJIOaRHHU rpaAHeHTOB TeMllepaTyp B KOHUeHTpaUHii B rOpH30HTa,lbHOM 

HarlpaBneliHki. B IlepBOii GZpHH WiCnaHHbIX paC'ieTOB IiCCneAyeTCa BnHJIHHe llOAl.eMHOii C&U&I 38 CWT 
pacTaopemor0 eeWecTBa Ha cKopocTb Tenno- H Macconepenoca. ITpw 3~0~ gricno JIbroaca a rennoa0e 

qaCn0 P3neR COXpaHalOTCR IIOCTOaHHbIMW (k = I, Ra, = lo’), SiCnO P3nea AJla paCTBOpezHHOr0 

BelISCTBa A3MeHlleTCa (&= 105-5 X lo'). Bo BTOpOti CepHB paC'ieTOB yCTaHaBn&iBaeTCa BnUIHWe 

qacna nbIoeca Ha ABnnceHHe ~~~AKO~TH anr TeqeHwfi 38 CseT TennonepeHOca (Ra,= lo’, Ra,= 0) N 
Macconepenoca (Ra, = 0, Ra, = 10’). %icno nbIO&iCa BapbspyeTca OT Cl,3 AO 5. nOnyqeHbIo606~aIo- 
4ae CooTHomeinia ~na cKop0cTel Tenno- w hfacconepeHoca,ebrpancaeMnx qepea 6e3pa3MepHbte KpHTe- 

pH54,xapaKTep~3y101l1He 3Tu aBneHH%. 


